Package: semiArtificial 2.4.1

semiArtificial: Generator of Semi-Artificial Data

Contains methods to generate and evaluate semi-artificial data sets. Based on a given data set different methods learn data properties using machine learning algorithms and generate new data with the same properties. The package currently includes the following data generators: i) a RBF network based generator using rbfDDA() from package 'RSNNS', ii) a Random Forest based generator for both classification and regression problems iii) a density forest based generator for unsupervised data Data evaluation support tools include: a) single attribute based statistical evaluation: mean, median, standard deviation, skewness, kurtosis, medcouple, L/RMC, KS test, Hellinger distance b) evaluation based on clustering using Adjusted Rand Index (ARI) and FM c) evaluation based on classification performance with various learning models, e.g., random forests.

Authors:Marko Robnik-Sikonja

semiArtificial_2.4.1.tar.gz
semiArtificial_2.4.1.zip(r-4.5)semiArtificial_2.4.1.zip(r-4.4)semiArtificial_2.4.1.zip(r-4.3)
semiArtificial_2.4.1.tgz(r-4.4-any)semiArtificial_2.4.1.tgz(r-4.3-any)
semiArtificial_2.4.1.tar.gz(r-4.5-noble)semiArtificial_2.4.1.tar.gz(r-4.4-noble)
semiArtificial_2.4.1.tgz(r-4.4-emscripten)semiArtificial_2.4.1.tgz(r-4.3-emscripten)
semiArtificial.pdf |semiArtificial.html
semiArtificial/json (API)

# Install 'semiArtificial' in R:
install.packages('semiArtificial', repos = c('https://rmarko.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.86 score 1 packages 24 scripts 331 downloads 10 exports 69 dependencies

Last updated 3 years agofrom:c92aafb2b1. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-winOKNov 22 2024
R-4.5-linuxOKNov 22 2024
R-4.4-winOKNov 22 2024
R-4.4-macOKNov 22 2024
R-4.3-winOKNov 22 2024
R-4.3-macOKNov 22 2024

Exports:cleanDatadataSimilaritydsClustCompareindAttrGennewdatanewdata.RBFgeneratornewdata.TreeEnsembleperformanceComparerbfDataGentreeEnsemble

Dependencies:classcliclustercolorspaceCORElearnDBIDEoptimRdiptestdplyrfansifarverflexclustflexmixFNNfpcgenericsggplot2gluegtableisobandkernlabKernSmoothkslabelinglatticelifecyclelogsplinelpSolvemagrittrMASSMatrixmcclustmclustmgcvminqamitoolsmodeltoolsmulticoolmunsellmvtnormnlmennetnumDerivpillarpkgconfigplotrixprabcluspracmaproxyR6RColorBrewerRcppRcppArmadillorlangrobustbaserpartrpart.plotRSNNSscalesStatMatchsurveysurvivaltibbletidyselecttimeDateutf8vctrsviridisLitewithr